数学系

当前位置:首页>>师资队伍>>在职教工>>数学系

暂无照片

袁帅

职称/职务:讲师

来校时间:2024年8月

E-mail:ys950526@hebtu.edu.cn

研究领域:非线性泛函分析

个人简介:

袁帅,现为河北k1体育讲师。主要从事椭圆偏微分方程和非线性分析领域的研究,已在《SIAM J. Math. Anal.》、《Nonlinearity》、《Bull. London Math. Soc.》、《J. Geom. Anal.》、《Nonlinear Anal.》《Forum Math.》等期刊发表论文多篇,现主持国家自然科学基金青年项目1项。

学习工作简历:

2013.9-2017.6 燕山大学 理学学士学位 信息与计算科学

2017.9-2020.6 中南大学 理学硕士学位 应用数学

2020.9-2024.6 中南大学 理学博士学位 应用数学


教学情况:主讲本科生公共基础课:高等数学,以及本科生数学专业课:数学分析。

获得基金资助情况:

国家自然科学基金青年项目:非局部微分方程正规化解的存在性与动力学性态研究(12501208),项目研究年限:2026.1.1-2028.12.31.(主持)

发表的主要论文情况:

1.Liu, Lintao; R?dulescu, Vicen?iu D.; Yuan, Shuai*, Constraint minimizers of mass critical fractional Kirchhoff equations: concentration and uniqueness. Nonlinearity 38?(2025),? 045008.

2.Liu, Lintao; Teng, Kaimin; Yuan, Shuai*, Local uniqueness of minimizers for Choquard type equations. Nonlinear Anal. 255?(2025),?113764.

3.Yuan, Shuai; R?dulescu, Vicen?iu D.; Tang, Xianhua; Zhang, Limin*, Concentrating solutions for singularly perturbed fractional (N/s)-Laplacian equations with nonlocal reaction. Forum Math. 36?(2024),?783–810.

4.Papageorgiou, Nikolaos S.; R?dulescu, Vicen?iu D.; Yuan, Shuai*, Nonautonomous double-phase equations with strong singularity and concave perturbation. Bull. Lond. Math. Soc. 56?(2024),? 1245–1262.

5.Liu, Lintao; Teng, Kaimin; Yuan, Shuai*, Asymptotic uniqueness of minimizers for Hartree type equations with fractional Laplacian. J. Geom. Anal. 34?(2024),?164.

6.Chen, Sitong; R?dulescu, Vicen?iu D.; Tang, Xianhua; Yuan, Shuai*, Normalized solutions for Schr?dinger equations with critical exponential growth in R^{2}. SIAM J. Math. Anal. 55?(2023),?7704–7740.

7.Yuan, Shuai*; Tang, Xianhua; Chen, Sitong Normalized solutions for Schr?dinger equations with Stein-Weiss potential of critical exponential growth. J. Geom. Anal. 33?(2023),?341.

8.Yuan, Shuai; R?dulescu, Vicen?iu D.; Chen, Sitong; Wen, Lixi*, Fractional Choquard logarithmic equations with Stein-Weiss potential. J. Math. Anal. Appl. 526?(2023),? 127214.

9.Yuan, Shuai; Tang, Xianhua; Chen, Sitong*, One-dimensional periodic fractional Schr?dinger equations with exponential critical growth. Math. Methods Appl. Sci. 46?(2023),?695–714.

10.Yuan, Shuai; Tang, Xianhua; Zhang, Jian*; Zhang, Limin Semiclassical states of fractional Choquard equations with exponential critical growth. J. Geom. Anal. 32?(2022),?290.

11.Yuan, Shuai; Tang, Xianhua; Chen, Sitong Normalized solutions of Chern-Simons-Schr?dinger equations with exponential critical growth. J. Math. Anal. Appl. 516?(2022),?126523.

12.Yuan, Shuai; Chen, Sitong Symmetric ground state solutions for the Choquard logarithmic equation with exponential growth. Appl. Math. Lett. 132?(2022),?108135.


详细介绍: